4,398 research outputs found

    Damping of electromagnetic waves due to electron-positron pair production

    Full text link
    The problem of the backreaction during the process of electron-positron pair production by a circularly polarized electromagnetic wave propagating in a plasma is investigated. A model based on the relativistic Boltzmann-Vlasov equation with a source term corresponding to the Schwinger formula for the pair creation rate is used. The damping of the wave, the nonlinear up-shift of its frequency due to the plasma density increase and the effect of the damping on the wave polarization and on the background plasma acceleration are investigated as a function of the wave amplitude.Comment: 11 pages, 5 figures; revtex

    The quantum vacuum at the foundations of classical electrodynamics

    Get PDF
    In the classical theory of electromagnetism, the permittivity and the permeability of free space are constants whose magnitudes do not seem to possess any deeper physical meaning. By replacing the free space of classical physics with the quantum notion of the vacuum, we speculate that the values of the aforementioned constants could arise from the polarization and magnetization of virtual pairs in vacuum. A classical dispersion model with parameters determined by quantum and particle physics is employed to estimate their values. We find the correct orders of magnitude. Additionally, our simple assumptions yield an independent estimate for the number of charged elementary particles based on the known values of the permittivity and the permeability, and for the volume of a virtual pair. Such interpretation would provide an intriguing connection between the celebrated theory of classical electromagnetism and the quantum theory in the weak field limit.Comment: Accepted in Applied Physics B: Special Issue for the 50 years of the laser. Comments are welcome

    The role of source and filter cues in emotion recognition in speech [Abstract]

    No full text
    In the context of the source-filter theory of speech, it is well established that intelligibility is heavily reliant on information carried by the filter, that is, spectral cues (e.g., Faulkner et al., 2001; Shannon et al., 1995). However, the extraction of other types of information in the speech signal, such as emotion and identity, is less well understood. In this study we investigated the extent to which emotion recognition in speech depends on filterdependent cues, using a forced-choice emotion identification task at ten levels of noise-vocoding ranging between one and 32 channels. In addition, participants performed a speech intelligibility task with the same stimuli. Our results indicate that compared to speech intelligibility, emotion recognition relies less on spectral information and more on cues typically signaled by source variations, such as voice pitch, voice quality, and intensity. We suggest that, while the reliance on spectral dynamics is likely a unique aspect of human speech, greater phylogenetic continuity across species may be found in the communication of affect in vocalizations

    Perceptual cues in nonverbal vocal expressions of emotion

    Get PDF
    Work on facial expressions of emotions (Calder, Burton, Miller, Young, & Akamatsu, 2001) and emotionally inflected speech (Banse & Scherer, 1996) has successfully delineated some of the physical properties that underlie emotion recognition. To identify the acoustic cues used in the perception of nonverbal emotional expressions like laugher and screams, an investigation was conducted into vocal expressions of emotion, using nonverbal vocal analogues of the “basic” emotions (anger, fear, disgust, sadness, and surprise; Ekman & Friesen, 1971; Scott et al., 1997), and of positive affective states (Ekman, 1992, 2003; Sauter & Scott, 2007). First, the emotional stimuli were categorized and rated to establish that listeners could identify and rate the sounds reliably and to provide confusion matrices. A principal components analysis of the rating data yielded two underlying dimensions, correlating with the perceived valence and arousal of the sounds. Second, acoustic properties of the amplitude, pitch, and spectral profile of the stimuli were measured. A discriminant analysis procedure established that these acoustic measures provided sufficient discrimination between expressions of emotional categories to permit accurate statistical classification. Multiple linear regressions with participants' subjective ratings of the acoustic stimuli showed that all classes of emotional ratings could be predicted by some combination of acoustic measures and that most emotion ratings were predicted by different constellations of acoustic features. The results demonstrate that, similarly to affective signals in facial expressions and emotionally inflected speech, the perceived emotional character of affective vocalizations can be predicted on the basis of their physical features

    Quantum simulator for the Schwinger effect with atoms in bi-chromatic optical lattices

    Full text link
    Ultra-cold atoms in specifically designed optical lattices can be used to mimic the many-particle Hamiltonian describing electrons and positrons in an external electric field. This facilitates the experimental simulation of (so far unobserved) fundamental quantum phenomena such as the Schwinger effect, i.e., spontaneous electron-positron pair creation out of the vacuum by a strong electric field.Comment: 4 pages, 2 figures; minor corrections and improvements in text and in figures; references adde

    Nittka's invariance criterion and Hilbert space valued parabolic equations in LpL_p

    Full text link
    Nittka gave an efficient criterion on a form defined on L2(Ω)L_2(\Omega) which implies that the associated semigroup is LpL_p-invariant for some given p(1,)p \in (1,\infty). We extend this criterion to the Hilbert space valued~L2(Ω,H)L_2(\Omega,H). As an application we consider elliptic systems of pure second order. Our main result shows that the induced semigroup is LpL_p-contractive for all p[p,p+]p \in [p_-,p_+] for some 1<p<2<p+<1 < p_- < 2 < p_+ < \infty

    Transmission resonances and supercritical states in a one dimensional cusp potential

    Full text link
    We solve the two-component Dirac equation in the presence of a spatially one dimensional symmetric cusp potential. We compute the scattering and bound states solutions and we derive the conditions for transmission resonances as well as for supercriticality.Comment: 10 pages. Revtex 4. To appear in Phys Rev.

    Dynamically assisted Schwinger mechanism

    Full text link
    We study electron-positron pair creation {from} the Dirac vacuum induced by a strong and slowly varying electric field (Schwinger effect) which is superimposed by a weak and rapidly changing electromagnetic field (dynamical pair creation). In the sub-critical regime where both mechanisms separately are strongly suppressed, their combined impact yields a pair creation rate which is {dramatically} enhanced. Intuitively speaking, the strong electric field lowers the threshold for dynamical particle creation -- or, alternatively, the fast electromagnetic field generates additional seeds for the Schwinger mechanism. These findings could be relevant for planned ultra-high intensity lasers.Comment: 4 pages, 2 figure

    Oscillatory Energy Exchange Between Waves Coupled by a Dynamic Artificial Crystal

    Full text link
    We describe a general mechanism of controllable energy exchange between waves propagating in a dynamic artificial crystal. We show that if a spatial periodicity is temporarily imposed on the transmission properties of a wave-carrying medium whilst a wave is inside, this wave is coupled to a secondary counter-propagating wave and energy oscillates between the two. The oscillation frequency is determined by the width of the spectral band gap created by the periodicity and the frequency difference between the coupled waves. The effect is demonstrated with spin waves in a dynamic magnonic crystal.Comment: 5 pages, 4 figure
    corecore